唯快不破时代,企业如何落地实时数据分析? | 爱分析洞见公司资讯-9001cc金沙以诚为本

news center

唯快不破时代,企业如何落地实时数据分析? | 爱分析洞见

发布日期:2021.03.12

1101-0 (1).jpg

数据已成为企业最重要的生产要素之一,驾驭实时数据的分析为企业提供了挖掘数据价值的重要利器。当前,越来越多的企业已经意识到实时数据的分析价值,实时数据分析应用迎来爆发。不过,企业在落地应用的过程中,无论在技术还是业务层面都面临诸多挑战。

当前,企业在生产和经营活动中产生的各类数据正以前所未有的速度增长,通过对实时及历史数据的融合分析,及时挖掘业务洞察和辅助决策,也已成为企业的普遍行动。

传统上,企业对数据的分析主要是在离线场景下,仅对历史数据进行事后分析,反馈周期较长。随着市场竞争环境和客户需求的快速变化,以及数据应用的深入,企业对数据驱动业务决策的实时性需求在不断提升。近两年来,以通信、金融、制造等行业为代表,企业对实时数据分析的应用迎来了爆发。

在实时数据的分析场景下,实时数据的分析结果在需求提出后即时处理完成,实现对业务需求的快速响应,实现数据价值的倍增。实时数据分析有哪些应用场景和价值?企业又该如何实现实时数据分析在自身业务场景的应用落地?

1、需求和技术驱动实时数据分析应用爆发

实时数据分析技术早前由互联网行业等起始,典型应用如实时个性化推荐等,这是由于互联网企业的业务本身就具备在线化特征。在线化业务积累了丰富的数据,为实时数据分析提供了良好的基础;此外,在线化业务一般具备业务量高并发等特征,需要更实时的业务洞察和更短的决策周期,且用户端对个性化服务和体验的需求也更加强烈。 而传统行业自身的在线化、数字化升级,实时数据分析也开始加速推进,需求开始爆发。 另一方面,实时处理技术的进步,也是推动实时数据分析应用场景快速落地的必要条件。尤其是各种开源框架的成熟,完善了实时处理技术生态。 实时数据的分析场景实现,包含了数据采集与接入、数据存储与查询、数据分析与计算、数据服务等环节的完整链条,每一个环节都要实现实时处理,这对相关数据技术提出了很大的挑战。在这些环节上,近年来都有相应的开源框架出现并走向成熟。 例如,kafka和flume用于实现高可靠性的实时数据采集和接入;druid、clickhouse、hbase等数据库在存储、查询方面的高性能,支撑了海量数据的实时olap场景;spark和flink等计算引擎,实现了大规模流数据实时计算。 在这些成熟的开源框架的基础上,众多开发者可以结合自身要解决的具体业务场景需求,快速地构建完整实时数据的分析9001cc金沙以诚为本的解决方案,并进一步地在应用实践中不断完善相关技术。

2、实时数据的分析应用价值

1101-1.jpg

实时数据分析对于企业的价值是显而易见的,主要体现在提升生产效率、提升客户体验、提供个性化产品服务三个方面。

提高生产效率

基于实时数据分析技术,企业能够实时追踪企业内部包括生产设备、人员等的情况,同时还能对产品和服务生产到消费全链条的状态进行监控,提高企业的生产效率。这方面典型的场景包括实时指标加工、实时反欺诈和实时监控等。 在实时指标加工的场景下,银行对线上交易数据进行实时采集和加工计算,计算出来的指标结果可以实现实时监控,实时报表;也可以向实时工作流的下游供数,构建实时数仓,实现数据化运营。 如在银行欺诈交易监测的场景下,通过实时数据分析,能在潜在欺诈交易尚未完成前,即可提前识别采取措施,以减少银行的损失。然而仅基于传统的历史数据仓库分析,在欺诈交易完成后,即便能够识别出来,事后进行追查的成本也会比较大。 在实时监控的场景下,工厂通过传感器采集设备数据,实时监控设备的运行状态,使用规则和模型配置进行关键数据的预测;对生产流水线进行二十四小时视频监控,对于采集的视频和图像通过模型及时发现生产中的异常状态。

提升客户体验

基于实时数据分析技术,企业能够实时感知到客户需求并及时提供产品和服务予以满足。这方面典型的应用场景包括实时授信和实时交易。 在实时授信的场景下,针对客户的贷款申请,基于对客户数据的实时采集,通过规则计算和模型预测,金融企业在数分钟就能作出审批授信额度的决定。 在实时交易的场景下,基于实时数据分析技术,证券公司可实时追踪股市波动,计算收益和价值,根据实时价格和投资策略自动平衡投资组合。

提供个性化产品和服务

基于用户相关的各方面数据,例如消费记录、购买偏好等,利用实时数据分析技术,能够根据消费者需求,及时提供个性化产品和服务。 这方面典型的场景包括实时精准营销。例如,网上商城使用基于日志的实时用户行为的实时统计与分析,提供精确产品营销,提高广告转化率。另外,基于实时数据分析,还可结合gps数据、代表性建筑等对用户进行定位,实现基于“情景”的精准商品推送,提升营销效果。 总体来看,实时数据分析技术在金融、通信、零售、制造业等诸多行业拥有成熟的应用场景。随着未来物联网时代的到来,更多的设备将联网,对数据的实时性要求更高,实时数据分析应用将迎来爆发。

3、企业落地实时数据分析应用仍需克服多重挑战

虽然有较为成熟的技术生态做支撑,但企业在落地实时数据分析应用的过程中,要实现工程化落地和业务价值,仍然面临多重挑战,主要包括技术和业务两个方面。 技术方面,在实时数据分析涉及到的数据采集与接入、数据存储与查询、数据分析与计算、数据服务等环节中,都有众多难点需要突破。系统需要在满足实时性指标的同时,具备生产环境下的高可用性和易用性。 在数据采集与接入环节,需要能够接入各种实时数据源和各类异构数据;在数据存储和查询环节,需要对用于数据分析产生的指标进行计算和存储,需要具备同时支持热数据、温数据和冷数据查询的频率等;在数据分析与计算环节,需具备实时处理过程中的复杂计算逻辑,包括糅合指标、模型、业务规则等各类计算逻辑。 另一方面,实时数据分析是一个与业务场景进行深度结合的过程,在具体应用落地的过程中,需要具备将技术与业务结合的能力。 具体来看,企业实时数据分析赋能具体的业务场景,基于指标规则和业务模型进行实时决策,并支持简单易行,零代码的配置实现。企业在日常生产经营活动中,积累了很多基于业务的专业知识体系,在应用实时数据分析技术时,需要将基于专家规则沉淀的知识体系能够迁移过来,并与实时数据分析技术中的ai模型等组件进行结合决策。

4、基于成熟产品,加速应用落地

对于大部分企业而言,完全自建实时数据分析平台往往需要投入大量资源,更好的选择是与具备成熟9001cc金沙以诚为本的解决方案的厂商合作,共同推进技术应用落地。 目前,市场上能够提供实时数据的分析9001cc金沙以诚为本的解决方案典型厂商主要包括以下两类。 第一类是专注于数据智能领域的厂商。此类厂商涉及从底层数据库、数据仓库,机器学习、日志分析等通用技术到上层数据应用领域,典型厂商包括九章云极datacanvas等。 第二类是有互联网背景的云厂商。这类厂商在内部互联网业务发展过程中,已广泛应用实时分析技术,基于自身业务场景建立实时数据分析能力。 不同厂商提供的实时数据分析9001cc金沙以诚为本的解决方案具备的功能和性能各有差异。总体来看,针对厂商提供的实时数据分析9001cc金沙以诚为本的解决方案,企业应该从以下维度进行评估。

性能方面,实时处理能力和高可用性是核心指标。

实时处理能力可以从系统的吞吐量评估,通常由qps(tps)、并发数两个因素决定,qps指的是每秒的请求数量,而并发数则指的是同时访问服务器站点的连接数。 吞吐量越大,越能提升实时数据分析的效能。如在数据采集与接入环节,大吞吐量的情况下,可提升采集和接入数据的效率;在数据存储和分析的环节,能够降低实时响应的时长,提升实时效率的速度。 一般来看,系统的吞吐量由使用的开源框架本身决定,目前,spark streaming 和 flink 在所有开源框架中具备的吞吐量最大。以九章云极的datacanvas rt实时决策中心产品为例,该产品支持高吞吐、高并发、毫秒级的实时计算需求。

功能层面,作为企业级产品,实时数据分析9001cc金沙以诚为本的解决方案需要满足易用性要求。

关键的易用性要求包括:需要支持灵活的权限管理,保证数据安全;需要支持多租户架构,满足企业各个业务部门同时使用场景下的算力分配、资源隔离等,并便于弹性扩容;需要具备完整的监控运维工具,便于监控审计和故障定位;需要配备低代码开发、自动化建模等工具,便于业务人员快速开发和上线实时分析应用。

此外,面向特定业务场景的服务经验也是重要的考量因素。

实时数据分析最终要服务于具体的业务场景,需要与业务知识相结合,具体体现在分析规则、指标、模型等方面。不同厂商由于客群定位、历史服务记录等方面的不同,跨业务场景服务能力有所差异。具体到产品层面,厂商在服务具体业务场景的过程中,可以沉淀大量基于专家规则、业务经验的知识体系,并在厂商产品中预置相关规则库、指标库、模型库等工具,助力应用的快速开发。

5、典型9001cc金沙以诚为本的解决方案案例:九章云极datacanvas rt实时决策中心产品

以九章云极datacanvas与某总部位于上海的股份制银行合作的项目为例。该银行此前经过多年it建设,依托主流互联网大数据生态圈,引入开源社区软件框架,完成了大数据分析平台、数据湖的搭建,建立了体系化的批量数据分析能力。 不过,基于原有的系统,该银行依然面临多方面挑战。首先,批量式、准实时数据效率无法满足所有的业务场景,无法覆盖实时营销推荐、实时风控、反洗钱等业务领域;其次,传统数据交付方式复杂,无法满足快速变化的业务需求。 在这一情况下,该银行客户与九章云极datacanvas合作,基于datacanvas rt实时决策中心软件,搭建了全行级大数据应用支撑平台。 该平台的运作流程如下:通过kafka实时进行数据接入后,实现对数据的实时存储,利用一般规则、实时指标、cep规则以及机器学习模型实现数据与业务的结合,最终在下游支撑起,营销管理系统、反洗钱监控系统等。 效果层面,通过引入九章云极datacanvas rt实时决策中心,该银行建立了全行实时数据处理服务能力,实现对交易、日志等流式数据秒级的采集、处理能力,每日全行esb报文采集和足迹采集量达17亿以上;实现实时标签(客户标签、产品标签、活动标签、内容标签)加工能力,面向营销业务提供基于事件的实时营销推荐(基金/理财首次开户、手机银行足迹、大额存入、权益阈值等)。 同时通过平台易用性能力建设,实现在线拖拽式、配置化场景开发能力,支持在线调试、业务应用热更新等能力,提升快速、自主、迭代式平台的交付能力。 通过建立秒级数据加工、服务能力,成功支撑手机银行足迹营销、营销管理、资金流向监控、大额资金变动、大额交易实时监控等近数十个实时场景;同时,可视化的流应用开发能力能够适应各种实时业务场景。


咨询

  • 售前咨询:
  • 联系电话:
  • 联系邮箱:
  • 9001cc金沙以诚为本的人才招聘:
网站地图